Angle, symmetry and transformation

Terms	Illustrations	Definition
Acute angle		Where two straight lines are cut by a third, as in the diagrams, the angles d and f (also c and e) are alternate. Where the two straight lines are parallel, alternate angles are equal.
Alternate angles 0° and less than 90°.		

Angle, symmetry and transformation

Axis		A fixed, reference line from which locations, distances or angles are taken. Usually grids have an x axis and y axis.
Bearings		A bearing is used to represent the direction of one point relative to another point. It is the number of degrees in the angle measured in a clockwise direction from the north line. In this example, the bearing of NBA is 205°. Bearings are commonly used in ship navigation.
Circumference		The distance around a circle (or other curved shape).

Angle, symmetry and transformation

Compass (in directions)			An instrument containing a magnetised pointer which shows the direction of magnetic north and bearings from it. Used to help with finding location and directions.
Compass points			Used to help with finding location and directions. North, South, East, West, (N, S, E, W), North East (NE), South West (SW), North West (NW), South East (SE) as well as: - NNE (north-north-east), - ENE (east-north-east), - ESE (east-south-east), - SSE (south-south-east), - SSW (south-south-west), - WSW (west-south-west), - WNW (west-north-west), - NNW (north-north-west)
Complementary angles			Two angles which add together to 90°. Each is the 'complement' of the other.

Angle, symmetry and transformation

Angle, symmetry and transformation

Cosine function in trigonometry		$\cos (\theta)=$ Adjacent / Hypotenuse
Degree		The most common unit of measurement for angles. One whole turn is equal to 360 degrees, written 360°
Directional language		Use a variety of words to help with directions such as; - left, right, up, down, forwards, backwards, sideways, across, close, far, along, to, from, over, under - direction, near, through, towards, away from, underneath, quarter turn, half turn, three quarter turn, whole turn, journey, route, clockwise, anti-clockwise, North, South, East, West, (N, S, E, W) - map, plan, compass point, north, south, east, west, (N, S, E, W) - horizontal, vertical , diagonal, clockwise, anticlockwise, North, South, East, West, (N, S, E, W), North East (NE), South West (SW), North West (NW), South East (SE). - NNE (north-north-east), ENE (east-north-east), ESE (east-south-east), SSE (south-south-east), SSW (south-south-west), WSW (west-south-west), WNW (west-north-west), NNW (north-north-west)

Angle, symmetry and transformation

Exterior angle		In a polygon, exterior angles are formed outside between one side and the adjacent side This is the angle that has to be turned at the vertex if you are travelling around a shape.
Grid References		Helps identify position relative to a scale in the horizontal and vertical directions on a page or screen. The scale can use letters or numbers or a combination of both. In this example here, the grid references are in brackets. The first number in the grid reference refers to the position on the x axis and the second number refers to the position on the y axis.
Half turn		Rotation through 180 0 The longest side of a right-angled triangle. It is the side opposite the right angle.
Hypotenuse		

Angle, symmetry and transformation

Interior angle		At a vertex of a shape, the angles that lie within it.
Obtuse angle		An angle which is more than 90° but less than 180°.
Opposite angles		Angles formed where two line segments intersect. In the diagram ' a ' is opposite ' c ' and ' b ' is opposite ' d '. Also called vertically opposite angles.

[^0]
Angle, symmetry and transformation

Order (in symmetry)	No rotational symmetry Order 6 symmetry	Order 3 symmetry Order 16 symmetry	The number of times a shape can be rotated and fit exactly on top of its original position within a complete turn.
Parallel lines	\longrightarrow		Lines are parallel if they are always the same distance apart (called "equidistant"), and will never meet. Here 'm' and ' n ' are parallel

[^1]Angle, symmetry and transformation

Perpendicular lines		Lines that are at right angles (90) to each other.
Pi		The ratio of a circle's circumference to its diameter. Equal to $3.14159265358979323846 . .$. (the digits go on infinitely without repeating). Pi is often rounded to 2 decimal places to 3.14
Positional language		

[^2]
Angle, symmetry and transformation

		- over, under, above, below top, bottom, side on, in, outside, inside - around, in front, behind , front, back, before, after, beside, next to, middle - opposite, apart , between, edge, corner etc.
Protractor		An instrument for measuring or drawing angles, usually in the form of a semi-circle marked with degrees along the curved edge.

Angle, symmetry and transformation

| Pythagoras' |
| :--- | :--- | :--- |
| Theorem | | In a right angled triangle, the square of the long side |
| :--- |
| (hypotenuse) is equal to the sum of the squares of the other |
| two sides. It is stated in this formula: |
| $a^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ |
| Pythagoras' Theorem was founded by Pythagoras of Samos, |
| a Greek philosopher and mathematician. |

Angle, symmetry and transformation

Angle, symmetry and transformation

Reflective Symmetry
or Line Symmetry
Right angle
Rotational
Symmetry

Angle, symmetry and transformation

Scale		The ratio of the length in a drawing (or model) to the length of the real thing. Ratios are used to enlarge or reduce an image, drawing, model etc. E.g. this model car is built in the ratio 1:43 meaning the real car is 43 times bigger.
Scale drawings		A drawing that shows a real object with accurate sizes reduced or enlarged by a certain amount. E.g. this floorplan for a house giving accurate measurements as well as the correct proportions for the actual house.
Similarity (in modelling)		Being able to calculate and use a scale factor that connects two similar figures. This helps when making scale models e.g. models of windmills.

Angle, symmetry and transformation

Sine function		$\sin (\theta)=$ Opposite / Hypotenuse	
Straight angle		Angles which add up to 180 degrees.	
Supplementary			
Tangles			

15 | Numeracy and mathematics glossary

Angle, symmetry and transformation

Tangent function in trigonometry		$\tan (\theta)=$ Opposite / Adjacent
$\frac{\text { Tessellation or }}{\text { Tiling }}$		A pattern made of identical shapes where the shapes fit together without any gaps and the shapes do not overlap.
Three quarter turn		A rotation through 270° This is the same as three right angles ($3 \times 90^{\circ}$).
Transformation		Changing a shape using rotation (turns), reflection (flips), translation (slides) or resizing it.
Translation		Otherwise known as 'sliding' a shape by moving it without

16 | Numeracy and mathematics glossary

Angle, symmetry and transformation

		rotating or flipping it. The shape still looks exactly the same, just in a different place.
Trigonometry		Trigonometry is the study of triangles. It can help find out unknown values of a triangle's sides or angles if other values are known. Many formulae are used to help with this. The functions of trigonometry are known as sine, cosine, and tangent.
Vertex (singular) or vertices (plural)		A 'corner' or corners on a 3D object. Opposite
Whole turn		A point(s) where two or more straight lines meet.

Data and analysis

[^3]Data and analysis

Data and analysis

Census		When data is collected for every member in a group.
Certainty		The probability that an event will definitely happen.
Chance	 There are 11 balts in this box. The chances of pulling out a red ball is 4/11 The chances of pulling out a yellow ball is $4 / 11$ The chances of pulling out a blue best is $1 / 11$ The chances of puling out an orange bell is $2 / 11$ It could be estimated from the calculated chances that - There is an equal chance of pulling out a red or yeliow ball - You are most likely to pick out a red or yellow dall - You are least likely to pick out a blue bal	The number of times an event is likely to happen compared to the number of times it could happen. For example; There is a 1 in 6 chance of throwing a 3 on a dice labelled $1-6$. It is likely to happen once as there is only 1 number 3 on the dice but it could happen 6 times.
Consequences		The impact a decision can make on yourself and on others. For example; Reading food labels when shopping for the family - The majority of the food items state it is high in sugar, fat and calories. If this food is eaten each night, consequences for the family may be tooth decay long term, gradual weight gain etc.
Continuous data		Continuous data is measured and can be any value within a range e.g. the length of a leaf. The time taken to run a race is continuous as all measurements have meaning.

Data and analysis

Data		A collection of facts, such as numbers, words, measurements, observations
Discrete data		Discrete data is counted and can only take certain values - like whole numbers e.g. the number of cars passing by a school. Shoe size is an example of discrete data as size 6 and 7 have a meaning however size 6.2 does not.
Distribution		How spread out the set of data is.

Data and analysis

Data and analysis

Least common / least popular		The number or item which appears least often in a set of data.
Likelihood		The chance that an event will happen.
Line Graph	Bird Watching	A graph that shows information that is connected in some way - such as change over a period of time
Make predictions		Use data available to suggest what the future may be.
Mean		The mean is the average of the set of data - it is the sum of the numbers divided by how many numbers there are. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the mean would be $(5+5+6+7+8+12+13+15+16) / 9=$ $87 / 9=9.67$ to 2 d.p.
Median		The median is the middle value in a sorted list of numbers. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the median would be 8 .
Misleading information		Information which has been adapted by either presentation or selection to give the wrong impression of the true data.

Data and analysis

Mode		The mode is the number which appears most often in a set of data. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the mode would be 5 .
Most common / most popular		The number or item which appears most often in a set of data.
Pictogram	Coter ${ }^{\circ}$ 	A Pictogram or Pictograph is a way of showing data using images.
Pie chart	Number of birds	A chart which uses 'pie slices' to show relative sizes of data. The sections of the chart can be recorded in percentages, e.g. half of the pie represented 50% of the data collected.
Predictions		An educated guess at future events based on past experiences. E.g. predicting the weather in December.

Data and analysis

Probability		How likely something is to happen - calculated as the number of times an event actually happened divided by the number of possible events. It can be expressed as a fraction, decimal fraction or percentage.
Qualitative		Descriptive information.
Quantitative		Numerical information.
Questionnaire		A set of questions used to gather information during a survey.
Range		The range is the highest number in the set take away the lowest. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the range would be (highest - lowest) $16-5=11$.
Raw data		Raw data is the data collected for example in a survey.
Robust information		Robust information has been gathered and presented in an appropriate way.
Sample		A selection taken from a larger group (the "population") so that you can examine it to find out something about the larger group.
Sample size		The number of pieces of information gathered from the sample in order to represent the whole "population." E.g. 100 men were surveyed to find out how many hours they spent exercising each week. (100 is the sample size).
Scale		The intervals that are used on a graphical representation of data e.g. a scale which rises in ones or in tens, etc.

Data and analysis

Stem and leaf plots	Data Set: $11,12,13,13,14,18,23,24,27,27,31,34,36,42$ Stem and Leaf Plot:	A table where each data value is split into a "leaf" (usually the last digit) and a "stem" (the other digits). For example "32" is split into "3" (stem) and "2" (leaf). The "stem" values are listed down, and the "leaf" values are listed next to them.					
Survey		Gathering information about a certain topic or issue for a particular reason. The information can help people make decisions about topics of interest e.g. most popular holiday destinations for young families.					
Tally Marks		A visual representation of the number of times an item appears in a set, these are bundled in groups of five. For example: \|	represents 2 and				represents 5
Trends		The overall picture of a set of data over time - e.g. the temperature is rising over time. For example: House prices, over time, in the UK have shown an upward trend.					
Uncertainty		The probability that an event may not happen.					
Vague information		Vague information is information which is presented without using all available information.					

Data and analysis

Venn Diagram

Data and analysis

Data and analysis

Data and analysis

Census		When data is collected for every member in a group.
Certainty		The probability that an event will definitely happen.
Chance	There are 11 balts in thes box. The chances of pufting out a red ball is $4 / 11$ The chances of pulling out a yellow ball is $4 / 11$ The chances of pulling out a blue ben is $1 / 11$ The chances of pulling out an orange bell is $2 / 11$ It could be estimated from the calculated chances that - Therels an equal chance of pulling out a red or yeliow ball - You are most likely to pick out a red of yellow dall - You are least likely to pick out a blue bal	The number of times an event is likely to happen compared to the number of times it could happen. For example; There is a 1 in 6 chance of throwing a 3 on a dice labelled $1-6$. It is likely to happen once as there is only 1 number 3 on the dice but it could happen 6 times.
Consequences		The impact a decision can make on yourself and on others. For example; Reading food labels when shopping for the family - The majority of the food items state it is high in sugar, fat and calories. If this food is eaten each night, consequences for the family may be tooth decay long term, gradual weight gain etc.
Continuous data		Continuous data is measured and can be any value within a range e.g. the length of a leaf. The time taken to run a race is continuous as all measurements have meaning.

Data and analysis

Data		A collection of facts, such as numbers, words, measurements, observations
Discrete data		Discrete data is counted and can only take certain values - like whole numbers e.g. the number of cars passing by a school. Shoe size is an example of discrete data as size 6 and 7 have a meaning however size 6.2 does not.
Distribution		How spread out the set of data is.

Data and analysis

Data and analysis

Least common / least popular		The number or item which appears least often in a set of data.
Likelihood		The chance that an event will happen.
Line Graph	Bird Watching	A graph that shows information that is connected in some way - such as change over a period of time
Make predictions		Use data available to suggest what the future may be.
Mean		The mean is the average of the set of data - it is the sum of the numbers divided by how many numbers there are. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the mean would be $(5+5+6+7+8+12+13+15+16) / 9=$ $87 / 9=9.67$ to 2 d.p.
Median		The median is the middle value in a sorted list of numbers. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the median would be 8 .
Misleading information		Information which has been adapted by either presentation or selection to give the wrong impression of the true data.

Data and analysis

Mode		The mode is the number which appears most often in a set of data. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the mode would be 5 .
Most common / most popular		The number or item which appears most often in a set of data.
Pictogram	Coter ${ }^{\circ}$ 	A Pictogram or Pictograph is a way of showing data using images.
Pie chart	Number of birds	A chart which uses 'pie slices' to show relative sizes of data. The sections of the chart can be recorded in percentages, e.g. half of the pie represented 50% of the data collected.
Predictions		An educated guess at future events based on past experiences. E.g. predicting the weather in December.

Data and analysis

Probability		How likely something is to happen - calculated as the number of times an event actually happened divided by the number of possible events. It can be expressed as a fraction, decimal fraction or percentage.
Qualitative		Descriptive information.
Quantitative		Numerical information.
Questionnaire		A set of questions used to gather information during a survey.
Range		The range is the highest number in the set take away the lowest. For example: In the set of numbers $5,5,6,7,8,12,13,15$, 16 the range would be (highest - lowest) $16-5=11$.
Raw data		Raw data is the data collected for example in a survey.
Robust information		Robust information has been gathered and presented in an appropriate way.
Sample		A selection taken from a larger group (the "population") so that you can examine it to find out something about the larger group.
Sample size		The number of pieces of information gathered from the sample in order to represent the whole "population." E.g. 100 men were surveyed to find out how many hours they spent exercising each week. (100 is the sample size).
Scale		The intervals that are used on a graphical representation of data e.g. a scale which rises in ones or in tens, etc.

Data and analysis

Stem and leaf plots	Data Set: $11,12,13,13,14,18,23,24,27,27,31,34,36,42$ Stem and Leaf Plot:	A table where each data value is split into a "leaf" (usually the last digit) and a "stem" (the other digits). For example "32" is split into "3" (stem) and "2" (leaf). The "stem" values are listed down, and the "leaf" values are listed next to them.					
Survey		Gathering information about a certain topic or issue for a particular reason. The information can help people make decisions about topics of interest e.g. most popular holiday destinations for young families.					
Tally Marks		A visual representation of the number of times an item appears in a set, these are bundled in groups of five. For example: \|	represents 2 and				上epresents 5
Trends		The overall picture of a set of data over time - e.g. the temperature is rising over time. For example: House prices, over time, in the UK have shown an upward trend.					
Uncertainty		The probability that an event may not happen.					
Vague information		Vague information is information which is presented without using all available information.					

Data and analysis

Venn Diagram

Terms	Illustrations	Definitions
Actual		The correct answer.
Approximate/ Approximating		To give a 'rough answer' that may be slightly more or less than the actual answer.
Degree of accuracy		The level of accuracy to round a number to e.g. - to the nearest $10,100,1000$. - to 1 decimal place - to 3 significant figures
Estimation		Comparing different sizes and amounts (quantities) using appropriate vocabulary to describe them in relation to each other e.g. longer/shorter, lightest/heaviest A 'reasonable' guess. Predicting solutions and checking the accuracy of calculations e.g. estimating $317+498$ as approximately $300+500=800$ and comparing estimate to actual solution.
Rounding		Rounding can make numbers easier to work with e.g. - round a number to the nearest 10 (or multiple of 10) - when adding 42 and 98 , round down 42 to 40 and round up 98 to 100 to get an approximate answer. - In context of decimal places, e.g. $5.634=5.6$ (round up to 1 decimal place) or 5.63 (to 2 decimal places). - In context of significant figures, e.g. $0.00421=$ 0.0042 (to 2 significant figures).

Rounding rules		General rules of rounding are: - If the number you are rounding is followed by 5,6 , 7, 8, or 9, round the number up. Example: 38 rounded to the nearest ten is 40 , or 8.6 is rounded to the nearest whole number is 9 or 3.063 is rounded to 3.1 (to 1 decimal place). - If the number you are rounding is followed by 0,1 , 2,3 , or 4 , round the number down. Example: 33 rounded to the nearest ten is $30,5.4$ is rounded to the nearest whole number is 5 or 6.324 is rounded to 6.3 (to 1 decimal place)
Significant figures		With the number 368249, the 3 is the most significant digit, because it tells us that the number is 3 hundred thousand and something. It follows that the 6 is the next most significant, and so on. With the number 0.0000058763 , the 5 is the most significant digit, because it tells us that the number is 5 millionths and something. The 8 is the next most significant, and so on.

Tolerance

 If the task was to mark 34 cm on this ruler and the tolerance accepted in the measurement was plus or minus $0.1 \mathrm{~cm}(1 \mathrm{~mm})$ - both red arrows would be correct as they measure 3.3 cm and 3.5 cm . They are within $0.1 \mathrm{~cm}(1 \mathrm{~mm})$ of the actual required measurement. The blue arrow would not be accepted as it measures 3.2 cm , which is more than 0.1 cm (1 mmon) out with the actual required measurement. It is 0.2 cm (or 2 mm) out.

Tolerance is an allowance for error.
It is the maximum range of variation in the accuracy of calculations allowed within particular situations and contexts e.g. in construction, acceptable levels of tolerance will be very small.
For example;
You may be given a measurement of 3.4 cm with a tolerance of plus or minus $0.1 \mathrm{~cm}(1 \mathrm{~mm})$.
The measurement you make will be acceptable if it is anything from 0.1 cm less than 3.4 cm to 0.1 cm more than 3.4 cm .
Any measurement from 3.3 cm to 3.5 cm would be acceptable in this case.

Terms	Illustrations	Definitions
Abstract thinking		Thinking logically without the use of concrete material or visual representations.
Algebra	$2 \times$	The use of letters and numbers to express information.
Algebraic terms	$3 \times 2+3 \times 4=3 \times(2+4)$	This is the overall term used for shorthand algebra such as 4 t or 5 x
Distributive Law	Multiplying a number by a group of numbers added together is the same as doing each multiplication separately	
Early / Initial algebraic thinking	Understanding the order of numbers, their place on the number line and how they can be combined. Also understanding that the equal sign ' $=$ s shows balance	
e.g. $2+2=4$.		

41 | Numeracy and mathematics glossary

Expression	Let's use the letter c to represent 1 car. We therefore have $4 c$. We can simplify terms: $t+t+t+t t$ can be written as $5 t$	Numbers, symbols and operators grouped together that show the value of something.
Factorise		Finding all of the numbers which multiply together to give the number you start with
Factors of algebraic equations		If numbers share one or more factors, then they are called the common factors of those numbers. Common factors can be applied in algebraic equations to organise in to simpler equations. It is best to find the highest common factor.
Formula		A mathematical relationship or rule expressed in symbols e.g. the formula for volume of a box is $V=I \times b \times h$
Greater than		The symbol '>' means greater than e.g. $7>4$. The symbol always points to the lowest number/value.

Inequality / Imbalance	$\begin{gathered} 2 \neq 4 \\ \because \neq \square \end{gathered}$	A symbol for "is not equal to" (\neq) is required when quantities on either side do not have the same value.
Inequation / Inequality	$\begin{aligned} 3 x & \neq 3 x+6 \\ 9+7 & \neq 20-1 \end{aligned}$	An inequality does not have an 'equality' sign but instead uses either 'greater than' sign, 'greater than or equal to' sign, 'less than' sign or 'less than or equal to' sign.
Less than		The symbol '<' means less than e.g. $2<5$. The symbol always points to the lowest number/value.
Operators	$+-\quad \div$	Symbols are part of the universal language of mathematics. The four operators,,$+- \times, \div$ are the first set of symbols that learners usually become familiar with.
Pictures and symbols in algebra		Symbols can also replace numbers or operators and can have completely different values e.g. $\begin{aligned} & 4+{ }^{*}=10 \\ & \triangle \times 4=20 \\ & 3 ? 50-1 ? 50=4700 \end{aligned}$

Simplifying equations / collecting like terms	$2 x+3 x+x=6 x$	Making similar equations easier to work with. E.g. Knowing $\mathrm{a}+\mathrm{a}+\mathrm{a}=3 \mathrm{a}$
Solution Sets	$\begin{gathered} x+4>10 \\ x>6 \end{gathered}$ Therefore the solution set is any number greater than 6 .	A set of numbers that lists all possible solutions to a given mathematical problem.
Substitution	$\begin{gathered} x+6 \\ \text { where } x=2 \end{gathered}$ We substitute the value of x into our expression. Therefore : $2+6=8$	Replacing a letter in an algebraic expression with a numerical value. Different letters can be given different numerical values, unless they are constants such as $\mathrm{Pi}(\pi)$. If a letter appears more than once in an expression, the same numerical value is assigned each time.
Variables	$\sum_{\substack{2}}^{4 x}-7=5$	A variable quantity, as its name suggests, can change in value. In algebra, letters can be assigned a number.

44 | Numeracy and mathematics glossary

Terms	Illustrations Common denominator	
Decimal fraction		When two or more fractions have the same denominator (the number on the bottom) they have a common denominator. You can only add or subtract fractions if they have the same common denominator e.g. $2 / 5$ and $3 / 5$

Decimal point		A point or dot used to separate the whole number part from the fractional part of a number. In calculations, the decimal point does not move. Numbers to the right of the point are less than 1 and are represented as tenths, hundredths etc (see diagram). Numbers to the left of the decimal point are whole numbers. Units are often called 'ones'.
Denominator		The bottom number in a fraction, e.g. in' $1 / 2{ }^{\prime}, 2$ is the denominator.
Equal sharing / fair sharing		Exploring early division through splitting a group of items equally into a number of smaller groups. This underpins the concept of fractions. e.g. there are 12 apples and 6 children at the picnic. How many apples will each child receive so it is fair? It is also important to explore sharing unequally and having amounts 'leftover'.

Fraction wall		This is a wall where each row in the wall represents one whole number. Each row is split into different equal parts (fractions of the whole). It can help visualise equivalent fractions too. In this image, you can see such relationships as; - two halves equals one whole - two quarters equals one half - four eighths equals two quarters and one half - one third equals two sixths Etc...
Grouping		Understanding that a set of items can be grouped in to a number of smaller groups sometimes in equal amounts, sometimes in unequal amounts.
Hundredths		1 part of 100 equal parts, e.g. $1 / 100,0.01$. One hundredth of this 100 block is highlighted.

Fractions, decimal fractions and percentages

49 | Numeracy and mathematics glossary

Fractions, decimal fractions and percentages

Proper fraction		A fraction where the numerator (the top number) is less than the denominator (the bottom number) e.g. $1 / 2$ is a proper fraction.
Proportion	$\frac{1}{3}$ $\frac{2}{6}$ These pictures and fractions are in propertion, as the numer (atar (top number) increases by the same proportion (multplying by 21 and the denomingtor (bottorn number) incresces by the same proppotion (multiplying by 2)	'In proportion' means that two ratios or fractions are equal. E.g. $1 / 3=2 / 6$ are in proportion - they are 'proportionate' - equal to the same amount. Proportion also means two values are proportionate when a change in one is always accompanied by a change in the other. As one quantity increases or decreases another quantity increases or decreases by the same proportion. Real life situations where proportion is important could be; mixing cement, preparing hair dye, cooking/baking.
Ratio		A ratio shows the relative sizes of two or more values. Ratios can be shown in different ways. Using the ":", or as a single number by dividing one value by the total. E.g. if there is 1 boy and 3 girls you could write the ratio as:

Fractions, decimal fractions and percentages

		1:3 (for every one boy there are 3 girls) $1 / 4$ are boys and $3 / 4$ are girls 0.25 are boys (by dividing 1 by 4), 0.75 are girls 25% are boys (0.25 as a percentage), 75% are girls
Remainder		The amount "left over" after completing a calculation, e.g. 23 divided by 5 equally would be 4 remainder 3.
Simplify a fraction /Reduce a fraction	Simplity the Iraction $\frac{9}{12}$ Find the highest number that divides exacfly in to both the numerator (9) and the denominator (12). This is the highest common tactor In this case, the highest common factor is 3 Divide both the numerator (top number) and the denomipator (bottom number) by 3 $\frac{9}{12}=\frac{3}{4}$	Simplifying (or reducing) fractions means to make the fraction as simple as possible, ie. down to the lowest possible denominator. To simplify a fraction, divide the top and bottom by the highest number that can divide into both numbers exactly (highest common factor).

Fractions, decimal fractions and percentages

Fractions, decimal fractions and percentages

Thousandths		1 part of 1000 equal parts, e.g. 1/1000, 0.001.
Unit fraction		A fraction where the top number (the numerator) is 1 . E.g. $1 / 4$ is a unit fraction.
Vulgar fraction		A fraction expressed only by a numerator and denominator, not decimally, e.g. '1/2' Can also be known as a 'common fraction'.

Terms	Illustrations	Definitions
Certainty		The probability that an event will definitely happen.
Chance	Examples ot chance There are 11 balls in thes box The chances of putting out a red boll is 4/11 The chances of pulling out a yellow bell is $4 / 11$ The chances of pulling ort a blue ball is 1/11 The chances of pulling out an orange ball is $2 / 11$ It could be estimated from the caculated chances that; * There is an equal chance of pulling out a red or yollow ball - You are most akely to pick out a red or yeilow bal - You are least likely to pick out a blue ball	The number of times an event is likely to happen compared to the number of times it could happen. For example; There is a 1 in 6 chance of throwing a 3 on a dice labelled $1-6$. It is likely to happen once as there is only 1 number 3 on the dice but it could happen 6 times.
Consequences		The impact a decision can make on yourself and on others. For example; Reading food labels when shopping for the family - The majority of the food items state it is high in sugar, fat and calories. If this food is eaten each night, consequences for the family may be tooth decay long term, gradual weight gain etc.
Draw conclusions		To make statements about a set of data based on results.

Event				A single result of an experiment.
Frequency table		mber of cars passing		A table used to note tally marks and show frequencies of each item.
		Tally Marks	Frequency	
	Red	Hent 1	6	
	Silver	In+ H+\#T II	12	
	White		${ }^{17}$	
	Green	IIII	4	
	Blue	IHTIIII	9	
	Black	IHT	5	
	Gold	'	1	
Language of probability				The words used to describe the likelihood or chance of an event happening. Words can include; never, sometimes, always, likely, unlikely, possible, impossible, certain, uncertain, one in ten chance, 50/50 chance etc.
Likelihood				The chance that an event will happen.
Predictions				An educated guess at future events based on past experiences. E.g. predicting the weather in December.
Probability				How likely something is to happen - calculated as the number of times an event actually happened divided by the number of possible events. It can be expressed as a fraction, decimal fraction or percentage.
Uncertainty				The probability that an event may not happen.

Mathematics - its impact on the world past, present and future

Terms	Illustrations	Definition
Babylonian number system		It used only two numerals or symbols, a one and a ten to represent numbers. The system got trickier with larger numbers and used a base 60 system, rather than our system of base 10 .
Binary system		Only made up of only 0's and 1's. There is no $2,3,4,5,6,7,8$ or 9 . In a binary number each "place" represents a power of 2. E.g. $\begin{aligned} & 1=2^{0}=1 \\ & 10=2^{1}=2 \\ & 100=2^{2}=4 \\ & 1000=2^{3}=8 \\ & 10000=2^{4}=16 \end{aligned}$ Binary numbers are very useful in electronics and computer systems. Regardless of the type of information represented, it is all stored as bit patterns made up from the digits 1 or 0 . In other words everything that is stored on the computer is eventually broken down into its simplest form, which is a pattern of 1 s and 0 s .

Mathematics - its impact on the world past, present and future

Decimal number system		The number system we use every day, based on 10 digits ($0,1,2,3,4,5,6,7,8,9$). It can also be called 'base 10 ' system. The value of the digit depends on where it is placed in the number. This is called place value. Zero is used as a place holder which affects the value of the number e.g. 102 and 1002 - the 0 significantly changes the value of the number.
Egyptian number system	Decimal Egyptian Number Symbls $1=1$ staff 10. \cap Heel bone $100=9$ coil of rope $1000=\Sigma^{\text {L }}$ Lotus flower $10000=$ A pointing finger	Written symbols and hieroglyphics. There was a symbol for every power of ten and the numbers were written from right to left.

Mathematics - its impact on the world past, present and future

58 | Numeracy and mathematics glossary

Mathematics - its impact on the world past, present and future

		before it ((3+5) The 13 is found by adding the two numbers before it (8+5) The 21 is found by adding the two numbers before it (8+13) The next number in the sequence above would be 55 (21+34) There are many areas of nature where the Fibonacci sequence can be found and some of these areas include, flower petals, plants, fruit, the human face, the human hand and animals (i.e. rabbits) Leonardo Bonacci, known as Fibonacci, founded the sequence so it was named after him.
Greek number system	1 α 10 τ 100 ρ 2 β 20 κ 200 σ 3 γ 30 λ 300 τ 4 δ 40 μ 400 ν 5 ϵ 50 \sim 500 ϕ 6 S 10 ξ 100 χ 7 δ 70 0 700 ψ 6 η 20 π 200 ω 9 θ 90 g 900 λ	Originally had 27 symbols. Our own word "alphabet" comes from the first two letters, or numbers of the Greek alphabet -- "alpha" and "beta." Greek letters were also used for writing Greek numerals. The first nine letters (from alpha to theta) were used for the numbers 1 to 9 . The next nine letters (from iota to koppa) were used for multiples of 10 from 10 to 90 . Finally, the next nine letters (from rho to sampi) were used for 100 to 900 . For example, the numbers 1, 2, and 3 are alpha, beta, and gamma.

Mathematics - its impact on the world past, present and future

| Pythagoras' |
| :--- | :--- | :--- |
| Theorem |

Mathematics - its impact on the world past, present and future

Roman numerals	Base 10 Number \square	Roman Numeral I II III IV V VI VII VIII IX \mathbf{X}	Base 10 Number 10 20 30 40 50 60 70 80 90 100	Roman Numeral X $X X X$ $X X X$ $X L$ L $L X$ $L X X$ $X X X X$ C	Roman numerals were used by the Ancient Romans but we still use them sometimes today e.g. can be seen on some analogue clocks or after kings or queen's names e.g. Henry VIII (meaning Henry the $8^{\text {th }}$). Roman numerals use letters instead of numbers. There are seven letters you need to know: $\begin{aligned} & I=1 \\ & V=5 \\ & X=10 \\ & L=50 \\ & C=100 \\ & D=500 \\ & M=1000 \end{aligned}$
STEM					STEM stands for Science, Technologies, Engineering and Mathematics.

Measurement

Terms	Illustrations	Definitions
Area		The amount of surface space an object covers, measured using non-standard and standard units. Area is usually measured in square units e.g. square centimetres (cm2), square metres (m2) etc.
Area of a circle	The circumference is the distance aroundthe outside edge of circle. The radius of a circle is the distance from the centre to the circumference.	$\begin{aligned} & \text { Area }=\pi \times r^{2} \\ & r=\text { radius, } d=\text { diameter } \end{aligned}$
Area of a parallelogram	Area $=$ base x height	$\begin{aligned} & \text { Area }=b \times h \\ & b=\text { base } \\ & h=\text { vertical height } \end{aligned}$

62 | Numeracy and mathematics glossary

Measurement

Area of a rectangle	Area $=$ length x breadth Area $=8 \mathrm{~cm} \times 4 \mathrm{~cm}=32 \mathrm{~cm}^{2}$	Can be found by counting the squares or half squares in the rectangle or by using the following formula; Area $=l \times b$ $l=$ length, $b=$ breadth
Area of a square	Area $=$ length x length Area $=4 \mathrm{~cm} \times 4 \mathrm{~cm}=16 \mathrm{~cm}^{2}$	Can be found by counting the squares or half squares in the square or by using the following formula; Area $=l^{2} \quad l=$ length of side

Measurement

Area of a trapezium		Area $=1 / 2(a+b) \times h$ height	$h=\text { vertical }$
Area of a triangle	$\text { Area }=1 / 2 \times b \times h$	$\begin{aligned} & \text { Area }=1 / 2 \times b \times h \\ & b=\text { base } \\ & h=\text { vertical height } \end{aligned}$	

Measurement

Breadth		It is the same as width.
Capacity	The capacity of the container is 2 litres or 2000 ml . The volume of the container is $2000 \mathrm{~cm}^{3}$,	The maximum amount of space an object/container can hold e.g. its maximum capacity is 2 litres. Capacity is measured in ml . There are 1000 ml in a litre.
Circumference		The distance all the way around a circle. Circumference can be measured using the formula; $2 \times \pi \times r \text { or } \pi \times d$

Conservation of volume		Recognise that shapes and objects that look different can have equal volume e.g. by using different measuring jugs to show the same volume. In this example shown, there is 150 ml of juice in each container. The conservation of volume is knowing that when any object is split into smaller parts then the total volume of the parts is equal to the original volume..
Degree of accuracy		The level of accuracy to round a number to e.g. to the nearest $10,100,1000$. to 1 decimal place to 3 significant figures. This is particularly important in measurement in order to ensure accurate measurements. See tolerance in measurement.

Measurement

Diameter		A straight line which passes through the centre of a circle.
Height		How tall something is from its base to its top. The vertical distance between the top to bottom of an object.
Length		How long something is from end to end. The distance from one point to another.
Length conversions		10 mm in 1 cm 100 cm in 1 metre 1000 m in a kilometre Converting between lengths may look like; $4.7 \mathrm{~m}=4 \mathrm{~m} 70 \mathrm{~cm}$ or 470 cm $1 / 2 \mathrm{~m}=50 \mathrm{~cm}$

| Mass |
| :--- | :--- | :--- |
| Measuring tape 1 |
| Tape measure |\quad| A large body of matter with no definite |
| :--- |
| shape. |
| The amount of matter in an object. |

Measurement

Metric system		The decimal measuring system based on the metre, litre, and gram as units of length, capacity, and weight or mass.
Non-standard units of measurement		Everyday objects which can be used to compare measurements e.g. hands, feet, leaves etc. Any item used to measure items e.g. the tub can hold 13 rubbers (early capacity) or the table is 7 hands long (early length). Children will experiment with these until learning about the need for a set unit of measurement which is more accurate (standard units of measurement).
Pedometer		A measuring device to calculate the distance travelled by the user by measuring the number of steps taken. Can be attached to clothing or some pedometers are now available for the wrist, ankle or smartphone apps.

Perimeter of a shape		The distance all the way around the outside of a 2D shape. To find the perimeter of a shape, add together the lengths of all the sides. The total is the perimeter.
Perpendicular height		The height measured from the base to the vertex at the top, creating an angle of 90 degrees with the base.
Radius		The distance from the centre of a circle height
to any point on its circumference.		

71 | Numeracy and mathematics glossary

Speedometer		Measuring device to measure the speed travelled by a vehicle. Usually found on the vehicle's dashboard. Speedometers can be analogue or digital.
Standard units of measurement		The universal system of measurement e.g. mm, cm, ml, litres g , kg etc
Surface area		The total area of the surface of a threedimensional object. E.g. the surface area of a cube is the area of all 6 faces added together.
Thermometer		A measuring device used to measure temperature. The thermometer reading will rise when the temperature rises and fall when the temperature falls. Temperatures are recorded using the standard units of Degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ or Fahrenheit (${ }^{\circ} \mathrm{F}$).

Measurement

Tolerance in measurement	If the task was to mark 34 cm on this ruler and the tolerance accepted in the measurement was plus or minus 0.1 cm (1 mm) - both red arrows would be correct as they measure 33 cm and 35 cm . They are within 01 cm (1 mm) of the actual required measurement. The blue arrow would not be accepted as it measures 3.2 cm , which is more than 0.1 cm (1 mm) out with the actual required measurement. It is 0.2 cm (or 2 mm) out.	The margins of error acceptable in different contexts and the impact this could have on end the result. The 'degree of tolerance' will vary from context to context.
Trundle Wheel		A measuring device shaped as a wheel with a holding stick. Measures larger distances when a metre stick may be impractical e.g. measuring a football field or car park length. One full rotation of the trundle wheel is 1 metre and it clicks to alert the user when rotation has been completed so users need to keep count of the clicks.

Volume	The capacity of the containes is 2 fitres or container is 2 litres or 2000 ml . The volume of the container is $2000 \mathrm{~cm}^{3}$	The measure of space taken up by a 3D object. Usually measured in cubic units; for example, cubic centimetres (cm3) and cubic metres (m3).
Volume conversions		1000 ml in a litre Conversions between volumes may include e.g. $5.8 \mathrm{l}=5$ litres 800 ml or $5800 \mathrm{ml}, 1 / 2$ litre $=500 \mathrm{ml}$
Volume of a cone		$\begin{aligned} & V=\frac{1}{3} \times \pi \times r^{2} \times h \\ & \mathrm{~V}=\text { volume } \\ & \pi=3.14 \ldots(\mathrm{pi}) \\ & \mathrm{r}=\text { radius } \\ & h=\text { height } \end{aligned}$

Measurement
Volume of a cube
or cuboid

Measurement

Volume of a cylinder	$\begin{aligned} V & =\pi \times r^{2} \times h \\ & =3.14 \times 16 \times 10 \\ & =502.4 \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & V=\pi \times r^{2} \times h \\ & \mathrm{~V}=\text { volume } \\ & \pi=3.14 \ldots \text { (pi) } \\ & \mathrm{r}=\text { radius } \\ & h=\text { height } \end{aligned}$
Volume of a prism		$V=a \times h$
		$\begin{aligned} a & =\text { area of base } \\ h & =\text { height } \end{aligned}$

76 | Numeracy and mathematics glossary

Measurement

Volume of a pyramid	$V=\frac{1}{3} \times$ base aree \times perpendiedlar heingt $\begin{aligned} & =\frac{1}{3} \times 36 \times 9 \\ & =12 \times 9 \\ & =72 \mathrm{~cm}^{3} \end{aligned}$	V $=\frac{1}{3} \times$ base area \times perpendicular height
Volume of a sphere	$\begin{aligned} V & =\left(\frac{4}{3}\right) \pi \times r^{3} \\ & =3052.08 \mathrm{~cm}^{3} \end{aligned}$	$\begin{aligned} & V=\left(\frac{4}{3}\right) \pi \times r^{3} \\ & \mathrm{~V}=\text { volume } \\ & \pi=3.14 \ldots(\mathrm{pi}) \\ & \mathrm{r}=\text { radius } \end{aligned}$

77 | Numeracy and mathematics glossary

Measurement

Weight		How heavy something is. A person or object's mass.
Weight conversions		1000 g in a kg Conversions between weights may include e.g. $4673 \mathrm{~g}=4 \mathrm{~kg} 673 \mathrm{~g} \mathrm{or} 4.673 \mathrm{~kg} \mathrm{g,3/4}$ of $\mathrm{kg}=750 \mathrm{~g}$
Width		How wide something is from side to side.

78 | Numeracy and mathematics glossary

Terms	Illustrations	Definitions
Affordability		Discussing if you can afford an item e.g. - You have 5 p, the apple is 8 p, can you buy it? - The toy is $£ 2.50$ and the tshirt is $£ 4.30$. You have £10. Can you afford it? Taking account of any other important factors e.g. spending money needed for a trip, is it an essential buy? Is there a better offer?
ATM		Stands for 'Automated Teller Machine'. Electronic bank machine which allows cash withdrawals. Sometimes referred to as a 'hole in the wall' or cash machine. Some ATM's charge to use their machines. It will usually let you know this on the screen prior to using.
Available balance		This is the amount of money you are able to withdraw, which includes any overdraft amounts. It usually sits underneath the main balance on the account. Some stores can take 3-5 working days to debit your account but the available balance will usually include these pending payments whereas the first balance may not. The example shown here illustrates that the available balance is $£ 1340$. However, there is a $£ 300$ overdraft on the account so the account actually has $£ 1040$ of the account holder's own money, even though the first balance states $£ 1140$. There is $£ 100$ deduction pending (yet to be debited).

Money

Money

Money

Money

Budgeting		Budgeting is an important process for individuals, families, organisations and government when making financial decisions.
Building society	Offers financial services such as savings and mortgages but differs from a bank, as building societies are owned by its members.	
Building societies don't have shareholders like banks, so		
they aren't under the same pressure to make lots of		
money to pass on to them.		
Each person who has savings or mortgages with a		
building society is a member of it and has the right to give		
opinions and vote on key areas of business.		

Compound interest	$£ 400$ is borrowed for 3 years at 5% compound interest. Amount borrowed at the start $=£ 400$ Interest in the 1st year $=\frac{5}{100} \times 400=£ 20$ After 1 year $=£ 420$ ($£ 20$ interest) Interest in the 2nd year $=\frac{5}{100} \times 420=£ 21$ After 2 years $=£ 441$ ($£ 41$ interest) Interest in the 3rd year $=\frac{5}{100} \times 441=£ 22.05$ After 3 years $=£ 463.05$ ($£ 63.05$ interest) The total interest charged under compound interest will be $£ 63.05$.	Where interest is calculated on both the amount borrowed and any previous interest. Usually calculated one or more times per year.
Contactless technologies		Being able to make a payment quickly with a device e.g. a card or smartphone, by scanning payment machines without having to enter a pin. See the illustration for the contactless sign highlighted in red.

Money

Money

Credit card		A card issued by a lender e.g. bank to allow for goods/services to be paid for on credit (which needs to be paid back). Credit cards often have charges associated with them. Credit cards can be used to transfer debt. They are an example of a 'finance' deal.
Credit Union		A non-profit making union which is owned by its members. Money can be borrowed from the collection of deposits made by the members at competitive interest rates. Credit unions don't have shareholders like banks, so they aren't under the same pressure to make lots of money to pass on to them.
Currency		The system of money generally used in a particular country. For example, in the UK, the currency is Pounds Sterling.
Current		
account		
A current account is probably the most important account		
you will have, as it enables you to make all the day-to-day		
banking transactions that you need to.		
You can pay in money whenever you want and set up		
standing orders and direct debits to cover any expenses,		
such as your mortgage, rent, utility bills, council tax etc.		
You can also go overdrawn if you don't have sufficient		
funds to pay these expenses, although you should always		
agree this in advance with your bank first, as fees for		
unauthorised borrowing are much higher than for		
authorised overdrafts.		
Most current accounts come with a debit card, so that		

Money

		you can withdraw cash from an automatic teller machine (ATM) and pay for goods and services. You also usually get a chequebook with your current account.	
Debit			A record of money being removed from an account. When checking a bank statement, the word 'debit' is usually next to the amounts which have been removed from your account. "In debit" - This term is usually seen on utility bills such as gas and electricity. It is a record of the amount of money your account is in 'debt'.
Debit card			

Money

Deductions	Payroll Name	Teachers	Paydate 04/04/2016	An amount taken away from gross income to give net pay. Deductions can include national insurance, income tax or pensions.		
	Employee Name	Joe Bloggs	Tax Period: 10 Tax code: 11111 NI number/Code: 11111			
	Employee Number	1111111				
	Payments	Deductions	This period			
	Basic Pay $\quad 3169.50$		Taxable pay 2868.40			
		NI - D 263.14 Teacher scheme 301.10 Student Loans 158.00	$\begin{array}{ll} \text { Pensionable pay } & 3169.50 \\ \text { Employer's NI-D } & 254.49 \end{array}$			
			Year to date			
			Yax Paid 4128.40 Tax Paid-D 2668.06			
	GROSS PAY $\quad 3169.50$		NI Paid-D 2668.06 Taxable Pay 29016.65 Niable Pay 32027.65			
			NET PAY 2041.06			
			Paid by EACS.			
Deposit				You can 'deposit' money in to a savings or current account e.g. bank or credit union. This means putting money in to it. Money that a buyer gives to a seller as a first payment to prove that they intend to complete a transaction, e.g. when buying a house or a vehicle.		

Money

Money

Expenditure					The amount of money spent on goods or services. Expenditure needs to be carefully considered when budgeting.
Expenses		Receipt Amount Epense Typ \qquad Elevhere - Recaipt \qquad Receipted $£ 18.80$ 15.50 cop Meals Alowance - Elevhere - Dimer - Recepted 216.60 4.80 ©op Meals Alowance - Evevhere - Lunch - Receipted 54.90 2.35 CEP Meals Allowance - Esewhere - Lunch - Receipted $\mathrm{E4.50}$ 3.20 GPP Meals Alowance - Esevhere - Lunch - Receipted $£ 4.90$		$\begin{array}{r}\begin{array}{r}\text { Reimbursable } \\ \text { Anount (G8P) }\end{array} \\ \hline 3.35 \\ \hline 18.60 \\ \hline 15.90 \\ \hline 4.80 \\ \hline 2.35 \\ \hline 10.90 \\ \hline 3.20 \\ \hline 59.10 \\ \hline\end{array}$	The amount spent on something e.g. the expenses for a weekend trip to London would include travel costs, food and drinks, local attraction costs, accommodation etc. Some businesses and organisations will pay for an employee's expenses if costs, such as those listed above, are incurred as part of the employee's work. See an example of a business expenses claim.
Finance					Money provided to a person or business, which usually needs to be paid back e.g. car finance loan
Foreign exchange					Changing one currency to another using exchange rates. There may be charges for this service.
Gambling					To stake or risk money, or anything of value, on an outcome involving chance, in the hope of gaining something of more value or benefit. For example; - Playing the National Lottery - you risk £2 each week on the chance that your numbers will be drawn in order to win a lot more money - Sports - you may bet an amount of money on the chance of an outcome such as your favourite team winning a football game, in the hope that they will win, earning you more money than you had risked. Online gambling is a form of gambling where bets are placed on websites or apps on the internet once an

Money

				account has been set up.
Gross pay/ Gross profit				The money earned in wages before deductions have been made. The profit a business makes before taking away the total expenses from total income. Gross Profit minus Expenses $=$ Net Profit. Identity fraud is the use of a person's stolen identity in criminal activity to obtain money, goods or services through deception (pretending to be that person). Fraudsters can use your identity details to: - Open bank accounts. - Obtain credit cards, loans and state benefits. - Order goods in your name. - Take over your existing accounts. - Take out mobile phone contracts. - Obtain genuine documents such as passports and driving licences in your name.
Identity theft				

Money

Income		Money received, usually on a regular basis, from providing goods or services or through investments e.g. wages from a job, pensions, social security payments.
Income Tax		A tax you pay on your income such as wages, some savings, pensions etc. The amount of tax you pay depends on how much income you receive. Some income is tax free such as lottery wins. Everyone gets a personal allowance which they do not have to pay tax on.

Money

Money

Investment		Putting money in to a project, business or account with the aim of making a profit back, including making money through interest, e.g. investing through shares in a company or saving money in a high-interest account.
Lender		A person, business or organisation who provides funds to those who need it, but needs to be paid back.
Loan		Something that is borrowed (usually money) and needs to be paid back, usually with interest on top. Loans are an example of a 'finance' deal.
Loss		The amount of money lost by a business or organisation.
Mortgage		Amount of money borrowed to purchase a home, building or business which needs to be paid back with interest on top. Mortgages are an example of a 'finance' deal.
National insurance		Compulsory payments by employees and employers to provide state assistance for people who are unemployed, sick or retired in the UK.

Money

Money

Pay day loan		A payday loan is a short-term loan of money borrowed by someone who may be struggling for money until their wages are received (pay-day). Some payday loan companies allow you to choose the repayment period, rather than basing it on when you receive your wages. The payday loan is usually paid straight into your bank account, often within 24 hours of your application being approved. The payday loan repayment, plus interest, is then taken directly from your bank account on the due date. Pay day loans can have very large interest charges. These should be discussed by the customer and lender before approval.
Pending		Payments which are yet to be debited from your account. When you shop in a store or online, it can take between $1-5$ working days to show on your account. This means the payment for it is pending.
Personal allowance (in tax)		An amount of money you do not have to pay tax on. There is a standard Personal Allowance limit decided by the government.
Personal Pension		Individuals who join a private pension scheme pay monthly payments to the scheme in order to have a larger amount of savings when retired.

Policy excess	About you Alontive Mioymenter About your cover Feribe of hevresee tien 31 hinery 2013 to 30 henery Sers Primary Contents cover with Ascidental Domoges Sondorif eceen twose of moter aren Acciletal Danoge news Mph Rinh Peme fodellimit Snyle artidelel Fersenol posesteions Unepeeifiod itens Single ortiedelind Fresaur food Frosest masey and eredit conde Fedol epolee - flime per eyclel Upgraded Buildings cover Stondord ecens Shbidence encen frospe of wete nexu \square Legal Services Home Emergency Assistance Polisyholder Care Progromme Leydilndiline Premium calculation Annual premium due		perly ì escupleth liry Unit/live insics! Os 000 ne.) 87,500 81500 61,500 81,500 8150 * = - $+8$. 1800,000 850,000 8200	\ln mont tom trenict 205 59 net taha, aboke. 61525 c2es 830.6 hacluded es ntenefert heillotel se steneblent ع208.53	The agreed amount of money which is to be paid in the event of a claim. For example, if your windscreen was broken on your car, the insurance policy may require an excess of perhaps $£ 100$ to be paid by you before they will fix it. This excess would be taken off the total cost of repairing the windshield. Some policies have voluntary and compulsory excess payments. Compulsory excess means you must pay it in order to claim and the amount is set by the insurer. Voluntary excess means you can pay an extra amount of your choice. This usually brings down the cost of the monthly insurance premiums but this should be checked at the time of policy purchase. If you make a claim, you'll have to pay both the compulsory and the voluntary excess.
Profit					The difference between the amount earned and the amount spent in buying, operating, or producing something.
Recession					A period of negative economic growth usually lasting more than a few months, which can include high unemployment, reduced trade and industrial activity. This has also been known as the 'credit crunch'.

97 | Numeracy and mathematics glossary

Money

Revenue		The total amount of money made (by a person or business). All costs are then taken away from this total to find the gross and net profits.
Salary		The total amount of money to be paid to an employee by an employer for a year, usually paid with fixed regular payments on a monthly or sometimes weekly basis.
Savings		Savings is money that is stored away instead of being spent. The savings could be from wages or other
income, including from monetary gifts.		
Savings can be informal e.g. piggy bank or can be put in		
to a savings account in a bank. A savings account is a		
safer method and some accounts offer interest to be		
earned on savings.		
Savings may be for a long term or over a shorter term		
while saving up for something of high value, which is not		
affordable in a one off payment e.g. savings for a holiday		
or wedding.		

Money

Money

Store card							Similar to a credit card, however, they are limited to use at either a stated store or chain of stores. For example, a Next storecard can only be used for purchases at Next stores and online.
Transaction							Buying or selling something, where goods, services or money is passed from one to another
Transfer	\qquad Date \qquad 29 November 2012 29 November 2012 03 December 2012 04 December 2012 04 December 2012 04 Decamber 2012	Type bacs BACS so 00 DD DD DD DD DD DD SO OD TRF BACS		$£ 200.00$ £806.21 $\$ 175.00$ [43. 88 £20327 £33. 92 £12 12 £18. 55 £58. 24	Money in £2,19081 $\varepsilon 702.41$ §100.00 853.60		This is the movement of money from one account to another. This may be between a current account and a savings account or you can also transfer money to another person. Online banking sites and apps provide a quick and simple way to transfer money between accounts and to others. Usually abbreviated to TRF on a bank statement.
VAT							VAT stands for value added tax. It is a tax added on to goods or services that need to be taxed e.g. food, clothes, cars etc. Some things do not get VAT added to it like education, health service, postal service. The government decides on the rate of tax and items to be taxed.

Money

Wages		A regular payment, usually on an hourly, daily, or weekly basis, made by an employer to an employee in return for providing goods or services.
Withdrawal	Money removed from an account. E.g. You can withdraw (take out) money from an ATM cash machine.	

Multiples, factors and primes

Terms	Illustrations	Definition
Common factor		If numbers share one or more factors, then they are called the common factors of those numbers. For example: 12 and 30 - The factors of 12 are: $1,2,3,4,6$ and 12 - The factors of 30 are: $1,2,3,5,6,10,15$ and 30 So the common factors of 12 and 30 are: 1, 2, 3 and 6
Common multiple		A number that is a multiple common to two or more numbers. For example: - Multiples of 2 are $2,4,6,8,10,12,14,16,18$, - Multiples of 3 are $3,6,9,12,15,18, \ldots$ So, common multiples of 2 and 3 are $6,12,18$,
Factor		A number is a 'factor' if it divides exactly into a number e.g. the factors of 10 are $1,2,5,10$

Multiples, factors and primes

Factorising	Example of factorising; Factor $2 y+6$ - Both $2 y$ and 6 have a common factor of 2: - 2 y is $2 \times \mathrm{y}$ - 6 is 2×3 - So you can factor the whole expression into: $2(y+3)$ So $2 \mathrm{y}+\mathbf{6}$ has been "factored into" $\mathbf{2}$ and $\mathrm{y}+\mathbf{3}$	The process of finding the factors in an expression. It is like "splitting" an expression into a multiplication of simpler expressions.
Highest common factor (HCF)		The highest common factor of two or more numbers. For example: The HCF of 24 and 36 is 12 as it is the highest factor to divide in to both equally.
Lowest common multiple (LCM)		The lowest multiple which two or more numbers have in common. for example: The lowest common multiple of 6 and 12 is 12 .
Multiple		Counting in equal steps e.g. multiples of $2=2,4,6$, 8... A multiple is also the result of multiplying a number by a whole or negative number e.g. 15 is a multiple of 5 as $5 \times 3=15$ but 16 is not a multiple of 5 as no integer can be multiplied by 5 to give 16.

Multiples, factors and primes

Prime Number		A prime number can be divided evenly only by 1, or itself. It must be a whole number greater than 1 e.g. 5 can only be divided evenly by 1 or 5, so it is a prime number but 6 can be divided evenly by 1, 2, 3 and 6 so it is not a prime number (it is a composite number).

Terms	Illustrations	Definitions
100 Square	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 80 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 61 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 60 81 82 83 84 85 86 87 88 89 80 91 92 93 94 95 96 97 98 99 100 thesimal These are just 2 examples, many more pasterns can be found within this gind. File * countrgin 直a from0 AEd $=11$ bmestithte These are inst 3 examples, many more paterns can be found wirin this grid	A square showing numbers from either 0-99 or 1-100. Used to help with the four operations - addition, subtraction, multiplication and division. It can also be used to show a variety of patterns and sequences in numbers e.g. counting in 10 's in the vertical rows or the pattern involved in counting in 5's (all multiples end in 0 or 5) etc.

Number and number processes

Addition		To find the total of more than one amount, e.g. $14+10=24$ Addition is the inverse operation of subtraction. $\begin{aligned} & \text { e.g. } 350+\square=400 \text { could be solved by asking } 400- \\ & =350 \end{aligned}$ \square
Algorithms		Reading, writing and interrogating mathematical statements involving signs: - + add - - minus - = equals - x multiply - \div divide
Arrays	Arrays 000000 000000 000000 000000 $4 \times 6=24$ (4 rows of 6) $\bigcirc \bigcirc$ $6 \times 4=24$ (6 rows of 4)	Used to identify quantities and patterns to make quick estimates e.g. 2 rows of 5 dots recognised as 10 . Used to help calculate or check multiplication problems e.g. 24 can be shown as 4 rows of 6 or 6 rows of 4 .

Number and number processes

Associative law	It doesn't matter how you group the numbers when adding or multiplying. e.g. $(6+3)+4=6+(3+4)$ or $(2 \times 4) \times 3=2 \times(4 \times 3)$
Cardinal number or 'Cardinality'	The number given to the total amount of items in a set. e.g. there were 14 people in the hall - 14 is the cardinal number
$\begin{aligned} & \text { Commutative } \\ & \underline{\text { law }} \end{aligned}$	Numbers can be swapped around (within a calculation) when adding and multiplying and still get the correct answer. e.g. $4+3$ is the same as $3+4, \quad 4 \times 8=8 \times 4$
Composite number	A whole number that can be divided evenly by numbers other than 1 or itself. E.g. 9 can be divided evenly by 3 (as well as 1 and 9), so 9 is a composite number.
Consecutive number	Numbers next to one another in numerical order. e.g. - 5 and 6 - 4.2 and 4.3

Number and number processes

Conservation of number		Understanding that the quantity of a set does not change due to how they are arranged. e.g. in a group or in a row = same amount.
Digit		The symbols used to make numerals (numbers). 0, 1, 2, 3, $4,5,6,7,8$ and 9 are the ten digits used in our number system. E.g. the numeral 153 is made up of 3 digits ("1", " 5 " and " 3 ").
Distributive law	$3 \times 2+3 \times 4=3 \times(2+4)$	Multiplying a number by a group of numbers added together is the same as doing each multiplication separately. e.g. 3 lots of $(2+4)$ is the same as 3 lots of 2 plus 3 lots of 4
Division		To find the number of groups an amount can be split equally in to, e.g. $20 \div 5=4$ so 20 can be divided into 5 equal groups of 4 . When dividing, the answer does not have to be a whole number e.g. $17 \div 2=8.5$.

108 | Numeracy and mathematics glossary

		Division is the inverse operation of multiplication e.g. 100 divided by 10 could be answered by asking $10 \times$ \square 100.
Double facts		Used to quickly learn and recall addition facts. e.g. double 4 is 8 , double 5 is 10, double 6 is 12 etc.
Empty number line	$234+135$ This is two examples of a method which can be used to solve the calculation but there are other methods. 1524-687 This is an example of a method which can be used to solve the calculation but there are other methods.	A number line which can have any starting number to add or subtract a number in steps that the learner finds comfortable. See the picture here for how 234 add 135 can be broken up in to steps to make the calculation more manageable. Another example is shown of a subtraction problem. They can also be used for multiplication and division.

Number and number processes

Number and number processes

Number and number processes

Formulae		A formula is a special type of equation that shows the relationship between different variables. Using a formula is the most efficient way of solving problems that compare different sets of variables. E.g. Area of rectangle $=$ length x breadth, Volume of a cuboid $=\mid \times b \times h$
Integers		Integers are whole numbers, but they also include negative numbers and zero e.g. $-2,-1,0,1,2$
Mental agility		The ability to calculate problems mentally with speed, efficiency, accuracy in a variety of ways. Recall of number facts is important in being able to calculate quickly, as is mental jottings (writing down numbers to help track the calculation without using a written algorithm.) The preferred method is often selected until the learner has developed confidence in identifying the most efficient method.
Modelling		Generating a number sequence using a physical or pictorial pattern and working out the equation that the sequence represents. Formulae is used to find information about the items at any position in the sequence.
Multiplication		To find the product of more than one amount e.g. 4×3 (find 4 lots of 3). Multiplication is the inverse operation of division e.g. $10 \times \square=60 \text { could be answered by asking } 60 \div \square=10 .$
Near doubles		These facts are learned once 'double facts' are learned. E.g. To quickly answer $8+7$, the learner can recall double 8 as 16 then minus 1 or recall double 7 as 14 and add 1.

Number and number processes

Negative numbers		Numbers which are less than zero. e.g. $-1,-2,-3$ etc.
Number bonds		The different pairs of numbers which make up the same number e.g. the number bonds for 10 are $1+9,2+8,3+7$, $4+6$ and $5+5$. Learners try to learn these facts to help them with quick mental calculations.
Numeral		A symbol that represents a number. Digits make up numbers. e.g. 3, 49 and twelve are all numerals.
Odd number		A number which cannot be divided equally by 2 e.g. 1,3,5,7 etc
One to one correspondence		When counting, each object must be counted only once and as the number name is identified.
Order of operations		A set order of operations used within calculations involving more than one operation e.g. + and x. The use of mnemonics such as BODMAS, BIDMAS and BOMDAS are often used when deciding on the order of operations. BODMAS = Brackets first, orders next (e.g. powers and roots), division and multiplication then addition and

		subtraction. BIDMAS = Brackets first, indices next, division and multiplication then addition and subtraction. BOMDAS = Brackets Of Multiplication Division Addition Subtraction.
Ordinal number		Describes a position within an ordered set e.g. first, second, third, fourth etc.
Partitioning		To split a number into component parts. E.g. 10 can be $6+$ $4,5+5$ etc. These can also be known as 'number stories' or 'number bonds'. To split a number into component parts e.g. at First level; 38 can be partitioned into $30+8$ or $19+19$, or at Second level; 17×17 can be partitioned in to 17×10 and 17×7.
Place Value		Understand zero is equal to no amount How a number is made up and its relationship to other numbers. It is the place of each of the digit or digits which makes a difference to the value of the whole number e.g. 324 - the 2 is equal to 20 whereas in 234 , the 2 is equal to 200. How a number is made up and its relationship to other numbers. It is the place of each of the digit or digits which makes a difference to the value of the whole number and decimal fractions e.g. at Second level; 10.05 is smaller than 10.50.
Product		The results of multiplying 2 or more numbers together (only applies in multiplication) e.g. 10 is the product of 5×2.

Number and number processes

Real numbers		All points on an infinitely long number line, e.g. fractions, decimal fractions, roots, π etc.
Remainder		The amount "left over" after completing a calculation. e.g. 23 divided equally by 5 would be 4 remainder 3.
Repeated addition		Adding the same number repeatedly in order to find the answer to a multiplication problem. e.g. $4 \times 3=4$ lots of $3=3+3+3$
Repeated subtraction		Subtracting the same number repeatedly in order to find the answer to a division problem. e.g. $20 \div 5=5$ can be subtracted from 20 four times so the answer is 4.
Significant		With the number 368249, the 3 is the most significant digit, because it tells us that the number is 3 hundred thousand and something. It follows that the 6 is the next most significant, and so on. With the number 0.0000058763, the 5 is the most significant digit, because it tells us that the number is 5 millionths and something. The 8 is the next most significant, and so on.
fubitising		Recognising a quantity without counting, simply by looking. $e . g . ~ s e e i n g ~$ fig dots on a card as 3 or 6 on a dice without counting them individually.
Subtraction		To find the difference between two amounts, or the remainder, e.g. The difference between 12 and 7 is 5 as 12 - $7=5$.

115 | Numeracy and mathematics glossary

Number and number processes

		Subtraction is the inverse of addition, e.g. e.g. $300-\square=230$ could be solved by asking 230 $=300$
Sum		The result of adding together 2 or more numbers (only applies in addition). E.g. The sum of 5,4 and $2=11$.
Whole numbers		Any number from zero e.g. $0,1,2,3$ (no negative numbers of fractions).

Patterns and relationships

erms	Illustrations	Definitions
Cubed	Cubed 3 cubed or $3^{3}=3 \times 3 \times 3=27$	Multiplying a number 3 times e.g. 4 cubed is $4 \times 4 \times$ $4=64$. The cubed sign is ${ }^{3}$ For example, $5^{3}=5 \times 5 \times 5=125$
Cube root	This is the symbol that means "cube foor". $\sqrt[3]{27}=3$	Finding the cube root is the inverse process of cubing a number e.g. 3 cubed is $3 \times 3 \times 3=27$ so the cube root of 27 is 3 .

Patterns and relationships

Equations of straight lines	\qquad where: m-gatlent $\mathrm{c}=\mathrm{y}$-miterep	A form of the equation of the straight line is $y=m x$ +c . In a graph, ' m ' represents the gradient and ' c ' represents the point where the line intercepts the y axis' (y-intercept). Horizontal and vertical lines are special cases of $y=$ $\mathrm{mx}+\mathrm{c}$.
Fibonacci Sequence		Found by adding the two numbers before it together. e.g. $0,1,1,2,3,5,8,13,21,34 \ldots$ The 2 is found by adding the two numbers before it (1+1) The 5 is found by adding the two numbers before it (2+3) The 8 is found by adding the two numbers before it ((3+5) The 13 is found by adding the two numbers before it ($8+5$) The 21 is found by adding the two numbers before it (8+13) The next number in the sequence above would be $55(21+34)$

		There are many areas of nature where the Fibonacci sequence can be found and some of these areas include, flower petals, plants, fruit, the human face, the human hand and animals (i.e. rabbits) Leonardo Bonacci, known as Fibonacci, founded the sequence so it was named after him.
Formula		A mathematical relationship or rule expressed in symbols e.g. the formula for volume of a box is $V=1$ $x b \times h$
Gradient		The rate at which vertical height changes with respect to horizontal distance covered. A straight line that rises from left to right has a positive gradient and a straight line that falls from left to right has a negative gradient. To find the gradient of a straight line: - choose any two points on the line - draw a right-angled triangle with the line as hypotenuse - use the scale on each axis to find the triangle's: vertical length horizontal length - work out the vertical length \div horizontal length The result is the gradient of the line. Gradients can be recorded numerically as a fraction, decimal fraction or percentage. E.g. in a distance-speed graph, the gradient represents the speed of an object over a distance.

Patterns and relationships

Graphical representations		It is the most efficient method of comparing two related variables, in a visual way.
Number pattern		A set of numbers that has a specific rule which makes the pattern predictable; - odds and evens, times tables etc. - square numbers and triangular numbers. - Fibonacci sequence
Pattern		A repetitive sequence of events, shapes or numbers which can be continued.
Sequence		A set of numbers written in order according to a mathematical rule. For example: - $4,6,8,10,12 \ldots$ (increasing in equal multiples of 2) - $25,23,20,18,15,13 \ldots$ (subtracting 2 then subtracting $3 . .$.) - $1,2,4,8,16,32 \ldots$ (increasing by doubling) - 109, 129, 124, 144, 139, 159... (adding 20, subtracting 5)

Patterns and relationships

Terms	Illustrations	Definitions
Cubed	Cubed 3 cubed or $3^{3}=3 \times 3 \times 3=27$	Multiplying a number 3 times e.g. 4 cubed is $4 \times 4 \times 4=64$. The cubed sign is 3 For example, $5^{3}=5 \times 5 \times 5=125$
Cube root	This is the symbol for 'cube root'. $\sqrt[3]{27}=3$	Finding the cube root is the inverse process of cubing a number e.g. 3 cubed is $3 \times 3 \times 3=27$ so the cube root of 27 is 3 .
Power		The power of a number says how many times to repeat a multiplication. It is written as a small number to the right and above the base number e.g. $8^{2}=8 \times 8$ or $8^{3}=8 \times 8 \times 8$. $\begin{aligned} & { }^{2}=\text { "squared" (to the power of } 2 \text {) } \\ & 3=\text { "cubed" (to the power of } 3 \text {) } \end{aligned}$ All other values known as "to the power of"

122 | Numeracy and mathematics glossary

Powers and roots

Roots		Roots are the inverse process of powers. The root sign is $\sqrt{ }$
Scientific Notation		Scientific notation is a standardised method of writing numbers which may to too large or too small to write in full e.g. - 700000 can be written as 7×10^{5} - 8000000 can be written as 8×10^{6}
Square Root / Square numbers	This is the symbol for a 'square root $\sqrt{9}=3$	The square root of a number is a value that, when multiplied by itself, gives the number e.g. $4 \times 4=16$, so the square root of 16 is 4 . The symbol is \checkmark which always means the positive square root e.g. $\sqrt{ } 36=6$ (because $6 \times 6=36$)

Terms		Definitions 2 Dimensional shapes (2D) square, rectangle, triangle, circle, pentagon, hexagon, heptagon, octagon, nonagon, decagon, parallelogram, rhombus, kite, quadrilateral, trapezium.	
3 Dimensional objects (3D)			3D objects have three dimensions. The flat surfaces (faces) of many 3D objects are made up of 2D shapes e.g. cube, cuboid, sphere, cylinder, prism. 3D objects can be stacked or rolled and items can be put inside some 3D objects. They can also be combined to make models.

Arc	Part of the circumference of a circle or part of any curve.	
Circle	A 2-dimensional round shape with no corners or straight edges. Made by drawing a curve that is always the same distance from a centre. Circle calculations are interrelated. Given any one of radius, diameter, circumference or area all the others can be calculated.	
Circumference		The distance all the way around a circle. Circumference can be measured using the formula; $2 \times \pi \times r$ or $\pi \times d$

| Composite shape
 or composite
 figure | | A figure (or shape) that can be divided into more than one
 of the basic figures/shapes. For example, figure ABCD is a
 composite figure as it consists of two basic figures - a
 rectangle and triangle as shown here. |
| :--- | :--- | :--- | :--- |
| Congruent
 triangles | | Pairs or groups of triangles are congruent when they have
 exactly the same three sides and exactly the same three
 angles. The equal sides and angles may not be in the
 same position (if there is a turn or a flip). |
| Cross section of a
 shape | | A cross section is the shape made by cutting straight
 across an object. |
| Cube | | A 3D object made up of 6 square faces, 8 vertices and 12
 edges. All edges and faces are equal.
 It is also a prism because it has the same cross-section
 along a length. It is a square prism. All angles are 90. |

Properties of 2D shapes and 3D objects

Decagon		Any 2D shape with 10 sides.
Diameter		A straight line which passes through the centre of a circle.
Equilateral triangle		

Properties of 2D shapes and 3D objects

Heptagon		Any 2D shape with 7 sides.
Hexagon		Any 2D shape with 6 sides.
Isosceles triangle		Has two equal sides and two opposite equal angles.
Kite		Has two pairs of equal sides next to each other. Has no parallel lines. One pair of diagonally opposite angles is equal. Only one diagonal is bisected by the other. The diagonals cross at 90°.

Properties of 2D shapes and 3D objects

| Nets | | The 2D pattern that creates a 3D object when folded
 together. This is a net of a cube. |
| :--- | :--- | :--- | :--- |
| Nonagon | | Any 2D shape with 9 sides. |
| Octagon | | |

Parallelogram	Has two pairs of opposite equal sides. Opposite sides are parallel to each other and opposite angles are equal. The diagonals bisect each other.	
Pentagon		Any 2D shape with 5 sides.
Perimeter		The distance all the way around the edge of a 2 l To shape. of all the sides.
Pi (3.14...)	The ratio of a circle's circumference to its diameter. Equal to 3.14159265358979323846... (the digits go on infinitely without repeating). Pi is often rounded to 2 decimal places to 3.14.	

Properties of 2D shapes and 3D objects

Polygons		Shapes with many straight sides. There are regular and irregular polygons. Regular polygons have equal angles and sides of equal length. Irregular polygons have sides of different lengths.
Polyhedron		Any 3D object with flat faces.
Prism	Any 3D object with two identical ends and faces where the cross section is the same all along its length. In a triangular prism, there are two triangular faces and three rectangular faces. The face of any cross section of this shape when cut would always give you a triangle which gives it its name.	
Quadrilateral		Any 2D shape with four sides.
Radius		The distance from the centre of a circle to any point on its circumference.
Rectangle		

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Representation of } \\ \text { 2D shapes and 3D } \\ \text { objects }\end{array} & & \begin{array}{l}\text { Using sketches, isometric paper (graph paper) or computer } \\ \text { packages to draw 3D objects on a 2D plane. }\end{array} \\ \hline \text { Rhombus } & & \begin{array}{l}\text { Has four equal sides. Opposite sides are parallel to each } \\ \text { other and opposite angles are equal. } \\ \text { Diagonally opposite angles are equal. The diagonals bisect } \\ \text { each other at } 90^{\circ} \text {. }\end{array} \\ \text { OBBC Bitesize } \\ \text { OBBC Bitesize }\end{array}\right\}$
$\left.\left.\begin{array}{|l|l|l|}\hline \text { Sphere } & \begin{array}{l}\text { A 3D object shaped like a ball with no straight edges or } \\ \text { vertices. } \\ \text { Every point on the surface is the same distance from the } \\ \text { centre. }\end{array} \\ \hline \text { Square } & & \begin{array}{l}\text { A 2D shape with } 4 \text { equal sides and } 4 \text { corners. } \\ \text { All sides are of equal length. All angles are equal }\left(90^{\circ}\right) . \\ \text { Opposite sides are parallel. } \\ \text { The diagonals of a square of bisect each other at } 90^{\circ} .\end{array} \\ \text { diagonals are equal in length. }\end{array}\right] . \begin{array}{l}\text { A 2D shape which has one pair of parallel sides of different } \\ \text { lengths and a pair of opposite sides of equal length. }\end{array}\right\}$

Terms		Definitions a.m. Analogue clock\quadBefore noon. Latin for Ante Meridiem - before noon	
Annual		Uses the position of clock hands and numbers to display the time.	
Anti-clockwise			Occurs once every year.

Time

Calendar		A visual display showing months, weeks and days. A calendar can be used to support time management.
Century		A period of 100 years.
Chronological		Events ordered in order of when they happened e.g. by year
Clockwise		The process of moving the clocks forward each Spring and back again in Autumn to gain an extra hour of daylight in the evening in the Spring/Summer
Daylight savings an a clock.		
(DST)		A period of 10 years.
Decade		

| Digital clock | | Uses numbers and symbols to display the time e.g.03:30,
 $17: 45$ |
| :--- | :--- | :--- | :--- |
| Distance | | The length of space between two points. Distance if often
 referred to in terms of the length travelled in a journey e.g. m,
 km, miles.
 Can be found by using a formula - multiplying speed travelled
 and time taken;
 $\mathrm{D}=\mathrm{S} \times \mathrm{T}$
 $\mathrm{D}=$ distance
 $\mathrm{S}=\mathrm{speed}$ |
| $\mathrm{T}=$ time | | |

Time

Duration		A length of time.
Fortnight		A period of 2 weeks. Leap year February. A year is defined as the time it takes for the Earth to orbit around the sun once. It takes the Earth about 365.25 days to make one entire orbit around the sun. By adding one extra day every four years, the Earth is in the same point of its orbit at the same time of the calendar year each year.
Millennium		A period of 1000 years.
p.m.		After noon. Latin for Post Meridiem - after noon.
A plan for carrying out something specific with lists of intended		
events, times and durations.		

Time

Time

Time

141 | Numeracy and mathematics glossary

[^0]: 7 | Numeracy and mathematics glossary

[^1]: 8 | Numeracy and mathematics glossary

[^2]: 9 | Numeracy and mathematics glossary

[^3]: 18
 Numeracy and mathematics glossary

